Innovation objectives for decarbonising UK transport: near term targets for sustainable fuels and key projects

Simon BuckleyZero Emission Mobility Lead
Innovate UK KTN

What is Sustainable Fuel?

Avoid Land Use Change

Does Not
Displace or
Compete with
Food Production

Use Greener Sources of Energy

Conservative Water Use

Minimal impact on biodiversity

Avoid Pollution

A sustainable fuel is made...

...from waste

...from clean processes

Which Sectors are most suitable for sustainable fuels?

Liquid fuel options for maritime

Fuel	Pros	Cons	Outlook	
Liquified Natural Gas (LNG)	 Energy density 18% higher than HFO Infrastructure available and growing Low Sulphur emissions "Cleanest" fossil fuel Mature technology Regulatory route established 	 Volumetric density only 43% of HFO Slippage (unburnt fuel) Natural gas prices unstable Requires carbon capture to be considered low/zero carbon 	Limited CO ₂ reduction but maturity of technology higher than other alternative fuel options	
Biofuels	Mature technologyDrop in technology (HVO)Could be blended	 Questions over feedstock origin and environmental impact Scalability Competition for feedstock 	Little to no modification is needed to adopt HVO (100% FAME unlikely). Concerns over feedstock and scalability	
Hydrogen	 Can be combusted directly or in fuel cells Energy density 3 times higher than HFO Carbon free combustion 	 Volumetric density only 7% of HFO Leakage Current production mainly via fossil fuels Storage requires cryogenics or very high pressure 	Requires huge increase in production which must be "Green". Hydrogen essential for other fuel pathways	
Ammonia	 Can potentially use existing infrastructure Haber-Bosch process well established Scalable production 	 Highly toxic and corrosive Current production from fossil fuels Production of green ammonia limited by hydrogen availability 	Ammonia production and distribution is an established worldwide. Availability of hydrogen is key to further scale up	
Methanol	 Can be stored as a liquid Existing supply chain and storage in ports Storage under standard conditions Maersk ordered 13 methanol vessels to date 	 Current production from fossil fuels Lower energy density Worldwide production would need significant ramping up ramping up Regulation still under development Requires carbon capture to be Net Zero 	Industry giants backing methanol as a fuel however, it still requires carbon capture	

Liquid fuel options for maritime

Taken from: DfT Commissioned research on scenario analysis for emission reduction technology 2019

Liquid fuel options for maritime

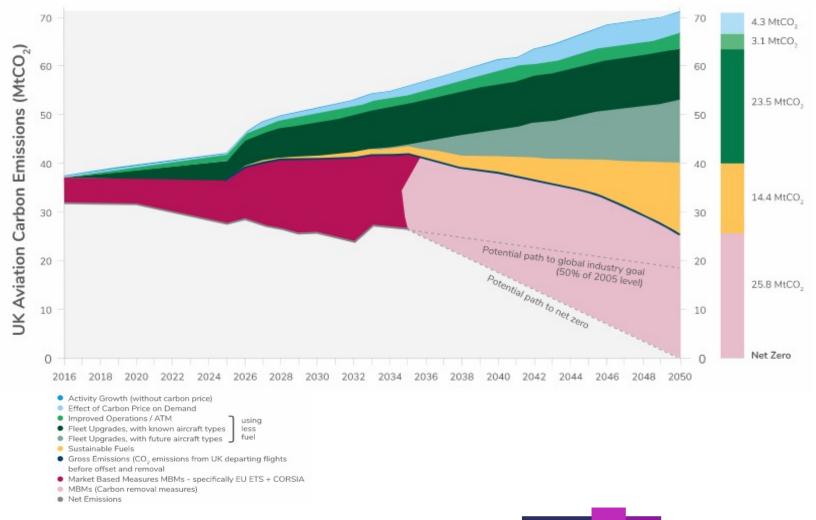
Taken from: Innovate UK Transport Vision 2050, 2021

Aviation - Sustainable Aviation fuels

Table 9: Potential fuel supply pathways for production from 2020-2050

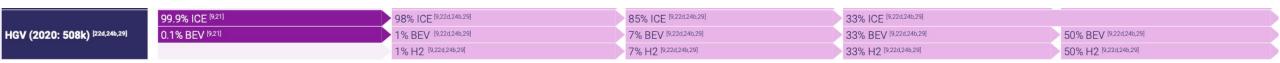
Timeframe	Technology pathway	Feedstock	UK production potential	
To 2020	Biomass to liquid	Mixed MSW	High	
To 2020	HEFA	Waste oils*	Low	
To 2020	Alcohol To Jet	Waste gases	High	
To 2020	Green diesel	Waste oils*	Low	
2020 - 2030	Alcohol To Jet	Lignocellulosic	Med	
2020 - 2030	Pyrolysis oils	Mixed MSW	High	
2020 - 2030	Farnesene	Sugar cane/LC residue	Low	
2020 - 2030	Co-processing	Wastes oils*/ pyrolysis	Med	
2020 - 2030	SIP	Sugars/LC materials	Med	
2030 - 2040	Novel Hydro routes	Waste oils*	Low/Med	
2030 - 2050	HEFA	Algae	Unknown	
2030 - 2050	Biotech conversion	Waste gases	Unknown	

Aviation - Sustainable Aviation fuels


	2020	2025	2030	2035	2040	2045	2050
Commuter » 9-50 seats » < 60 minute flights » <1% of industry CO ₂	SAF	Electric and/or SAF	Electric and/or SAF	Electric and/or SAF	Electric and/or SAF	Electric and/or SAF	Electric and/or SAF
Regional » 50-100 seats » 30-90 minute flights » ~3% of industry CO ₂	SAF	SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF
Short haul » 100-150 seats » 45-120 minute flights » ~24% of industry CO ₂	SAF	SAF	SAF	SAF	Electric or Hydrogen combustion and/or SAF	Electric or Hydrogen combustion and/or SAF	Electric or Hydrogen combustion and/or SAF
Medium haul » 100-250 seats » 60-150 minute flights » ~43% of industry CO ₂	SAF	SAF	SAF	SAF	SAF	SAF	SAF potentially some Hydrogen
Long haul » 250+ seats » 150 minute + flights » ~30% of industry CO ₂	SAF	SAF	SAF	SAF	SAF	SAF	SAF

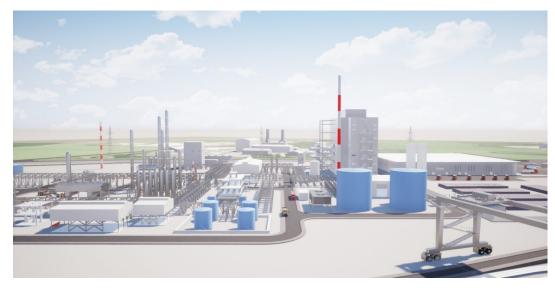
IATA SAF Symposium, Jonathon Counsell IAG, 2021

Aviation - Sustainable Aviation fuels



Sustainable fuel for HGVs

- Can reduce carbon emissions by up to 90 percent
- It is a drop in fuel for a number of OEM vehicles
- Requires on site fuel storage
- XPO logistics recently announced that 53 vehicles will be powered by HVO
- Concern over competition for feedstock



Production Case Study: Altalto – Velocys & British Airways

Velocys, in collaboration with British Airways are developing a commercial plant in Immingham, U.K. to make sustainable jet fuel.

It is expected to be Europe's first commercial scale waste-to-jet-fuel facility.

The plant will **process 500,000 tonnes of household and commercial waste** destined for landfill or incineration each year.

The plant is expected to produce 60 million litres of sustainable jet and road fuel annually.

The project has been a recipient of both F4C (£934,00) and GSGF funding (£2,381,000.)

Combined demand across Aviation, HGV and Maritime in UK

Full System Thinking

